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STOCHASTIC COMPARISONS OF ORDER STATISTICS,

WITH APPLICATIONS IN RELIABILITY

by

Jee Soo Kim, Frank Proschan, and Jayaram Sethuraman

ABSTRACT

This is an invited paper to appear in the special issue of Communications in Statistics

Theory and Methods devoted to "Order Statistics and Applications". This paper reviews recent

developments in stochastic comparisons of order statistics.
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1. INTRODUCTION AND SUMMARY.

An impressive array of papers has been devoted to inequalities and stochastic ordering of

lirear combinations and partial sums of order statistics and comparison of their expectations.

In this paper wfsurvey? recent advances in stochastic comparisons of order statistics along with

reliability applications.

Section 2 presents inequalities for linear combinations of order statistics from restricted fam-

ilies obtained by Barlow and Proschan (1966a). "Comparisons of linear combinations of order

statistics from distributions F and G are obtained for GI'F convex and for, G"-F starshaped.

These results yield cons..rvative upper and lower tolerance limits. For G exponential and F IFR

or IFRA, wepreseni stochastic comparisons for the total time on test', used in life testing.

We introduce the notions of majorization and Schur function. Because majorization leads to

many inequalities, these notions will be exploited extensively in the ensuing sections.

,Section 3 presents stochastic comparisons of order statistics from underlying heterogeneous

distributions. Given two sets of independent components (possibly unlike), majorization condi-

tions are given'by Pledger and Proschan (1971) which insure that any k-out-of-n system con-

structed from components in the first set will have reliability at least as great as that of a

corresponding system constructed from components in the second set. Since the ordered failure

times of the components represent order statistics from heterogeneous distributions, the order

statistics from one set of underlying distributions ,...), F,} can be compared stochastically

with those from another set {F, •

We present additional comparisons involving spacings between order statistics. In some of the

comparisons, the underlying heterogeneous distributions are compared with a single underlying

homogeneous distribution, while in others, they are compared with another set of distributions

less het, rogeneous in the sense of majorization. These results of Pledger-Proschan can be used

to approximate the reliability of certain types of systems of unlike components by computing the

reliability of corresponding systems of like components.

The main theme of Section 4 is a result of Proschan and Sethuraman (1976). They stochas-

tically compare whole vectors of order statistics, assuming F, ., F,(F*,..., F,) have propor-

.V '



tional hazard functions with A,...,A,(A,... ,A*) as the constants of proportionality. Pledger

and Proschan (1971) stochastically compare X(r) and X&,) separately for each r; these results can

be obtained as special cases of the Proschan-Sethuraman (1976) results.

Finally, an extension of stochastic comparison of random vectors to stochastic comparison of

random processes is presented.

Throughout we use the term increasing (decreasing) for nondecreasing (nonincreasing).

2. INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS.

Stochastic comparisons are made for linear combinations of order statistics from F and G

when F is convex with respect to G (i.e., G-IF(x) is a convex function on the support of F,

assumed an interval) and when F is starshaped with respect to G (i.e., G-1F(x) is a starshaped

function). The concept of F being convex with respect to G was introduced in van Zwet (1964)

and the concept of F being starshaped with respect to G is discussed in Barlow and Proschan

(1981).

We adopt the following notation and assumption. Let X(Y) have distribution F(G). We

assume that F(0) = 0 = G(0), and that F and G are continuous. We assume also that the

support of F is an interval, possibly infinite, and that G is strictly increasing on its support. We

use Pfor 1-Fand (for 1-G.

A positive function h is starshaped on [0,b), 0 < b < 0o, if h(x)/x is increasing for x in [O,b),

or equivalently, if h(ax) ah(x) for 0 < a < 1,0 < x < b.

A failure rate r(t) at time t is defined as r(t) = f(t)/iP(t) when density f(t) exists and F(t) >

0. We say F has an increasing failure rate (IFR) if r(t) is increasing in t and F has a decreasing

failure rate (DFR) if r(t) is decreasing in t.

A rar lon variable X is said to be stochastically smaller than a random variable Y (denoted

by X < Y) if (P(X > t) P(Y > t) for every real number t. We say X is stochastically

equal to Y(X =n Y) if P(x > t) = P(Y > t) for each real t. We stochastically compare linear

combinations of order statistics X(1 ) _ ... _ X(,,) from F and Y(j) _ ... K Y(,,) from G when

G-'F is starshaped as well as when G-'F is convex on the support of F.
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First we consider pairs of distributions F and G such that G-'F is starshaped on the support

of F. Barlow and Proschan (1966a) proved the following two lemmas which are fundamental tools

in obtaining stochastic inequalities. We shall find it convenient to define A. = Eaj, where the
i=i

aj represent real numbers.

n

Lemma 2.1. h(Zaxi) < Z"- 1 aih(x,) for all starshaped h on [0, b) and all 0 < X1 ... _< zn < b
i=1

n

for which 0 < Zaix < b if and only if there exists k(1 < k < n) such that 0 < A, " A <1,
i=1

and when k < n, + =-=A, = 0.

n n

Lemma 2.2. h(aixi) _ Zaih(xz) for all starshaped h on [0,b) and all 0 < x, ." _X, < b
i=1 i=1
n

for which 0 Eaixi < b if and only if there exists k(1 < k < n) such that A, " Ak_
i=1

1; Ak+1 = ' = An = 0. If F is starshaped with respect to G, then by Lemma 2.1

G-1F M aX(j )_ EaG-1F(X(o) = t aiY0.
i=1 i=1

This will be formally stated as follows.

Theorem 2.1. (Barlow and Proschan, 1966a). Let G-F be starshaped on the support of F,

F(0) = 0 = G(0). If there exists k(1 < k < n) such that 0 < A, < . A, < 1, and when

k < n,Ak+ = =An = 0, then

nf \

F (EajX(j) <" G( ai Y()). (2.1)

From Lemma 2.2 one may obtain the reverse inequality of (2.1). By assumption, the support of
n n

F is an interval, say [0,b]. If EOZX(i) > b, then F(EaiX()) = 1 >_ G(EaY()). Considering
i=1 i=1 i=1

outcomes for which EajX(j) < b, Lemma 2.2 leads to

G-'F ( aiX() _ aiG-'F(X(w))=t aY(,).
i=1 i=1

The above discussion is summarized in the following theorem due to Barlow and Proschan.

Theorem 2.2. Let G-'F be starshaped on the support of F and F(O) = 0 = G(O). Let aj > 0

for i = 1,2,-..,n and an 1 1. Then

F ajX(w) _, G(aY())• (2.2)
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Similar inequalities can be obtained for pairs of distributions F and G such that G- 1 F is convex on

the support of F. This is a strengthening of the starshapedness hypothesis. Barlow and Proschan

(1966a) present detailed discussions of the following theorems, which assume F is convex with

respect to G.

Theorem 2.3. Let G-'F be convex on the support of F, F(O) = 0 = G(O), and 0 < A _ 1 for

i = 1,2,.-.,n. Then
F(E.=aX(,) ) :!'t G(E=ajY()). (2.3)

i=1 i= I

Theorem 2.4. Let G-'F be convex on the support of F, F(0) = 0 = G(0), and for some

k(0 < k < n), 1 for i= 1,...,k and Ai < Ofor i= k+1,...,n. Then

F ajXj)) >'t G (EaiY{i) . (2.4)

i= 1

n n

From the simple identity Zaj xi = Z:dj(xi -X .-.1 ), one may verify (2.3) and (2.4) are equivalent
to

Fto<a

An important problem in statistical reliability theory and life testing is to obtain tolerance limits

as a function of sample data. The above inequalities can be used to construct conservative lower

or upper tolerance limits for IFR and IFRA distributions. Confidence limits for DFR and DFRA

distributions can also be obtained using the same techniques. See Barlow and Proschan (1966b).

Let G(t) = 1 - e, t > 0. Then G-'F starshaped on the support of F is equivalent to F
Nhaving an increasing failure rate average (IFRA). We now discuss results concerning "total time

on test" when successive observations are taken from an IRFA (DFRA) distribution.

If n items are put on life test and the test terminated at the time of the r th failure (Type -

II censored sampling), then T,, = EZ(n - i + 1)(X(j) - X(i-.)) represents the total time on test.

This statistic has been extensively studied and applied in the case of the exponential distribution

by Epstein and Sobel (1953) and Epstein (1960a,b). The best estimate of the mean 0 in the

exponential case is O(Z) = Tmn/r.

Now let F be IFRA (DFRA), F(0) = 0, and E(X) = 9. Then Barlow and Proschan (1966a)

show that the total time on test divided by the sample mean associated with F is stochastically
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larger (smaller) than that associated with the exponential distribution, i.e.,

r r
-(n - i + 1) KX( - X(i-_1)) /rf >.t (:5 t) ( n - i + 1) (Y() - Yc,_- )) /r?7 .

i=1 i=1-

In the case of the exponential distribution, the normalized spacings (n - i + 1)(Y(o) - Y( -1)) are

independent and identically distributed for i = 1,...,n and n > 1. Thus one might expect that

the spacings would exhibit certain montonicity properties for distribution F such that G-'F is

convex. Barlow and Proschan (1966a) show that if F is IFR (DFR) with F(0) = 0, then (n - i +

1)(X(i) - X(-i)) is stochastically increasing (decreasing) in n > i for fixed i. We can establish

as a corollary that if F is IFR(DFR), then the spacing (n - i + 1)(Xj) - X(_ 1)) is stochastically

decreasing (increasing) in I = 1,2, -. ,n for fixed n. For example, (n-i)(X(2) - X()) !5"' nX(1 ),

where X(o) =_ 0. See Barlow, Marshall, and Proschan (1969) for further discussion of inequalities

involving starshaped and convex functions. Chan, Proschan and Sethuraman (1983) consider an

ordering different from the van Zwet convex ordering. They say that F is more convex than G, in

symbols F >' G, if FG- I (t) is a convex function on (0,1). When F and G have density functions

f and g, respectively, they show that F >' G if and only if f () is an increasing function of x,

thus relating the concept of increasing likelihood ratios to convex ordering.

An extremely powerful and useful concept for deriving a great variety of inequalities is the

concept of majorization.

k k

Definition 2.1. Let a, < a2 ... a,,b, > b2 > ... b,,Za> b for k = 1,2,...,n - 1, and
j=1 j=,

n

>= 1 aj = Zb3 . Then a = (a,,an) is said to majorize b = (bl,'"-,b,), written a >m b.
J= I S

Definition 2.2. Let €(_) > q(_) whenever a >' b. Then 0 is called a Schur function.

Theorem 2.4. (Schur (1923), Ostrowski (1952)). Let 0(.1) be a differentiable, real-valued function

of n real variables. Then 0 is a Schur function if and only if (xi - x.)(2 - -it) > 0 for all x

and all i # j.

For a systematic treatment of the theory of majorization and its applications in mathematics

and statistics, see Marshall and Olkin (1979). The concept of majorization has been extended to

elements of L,(0, 1) in Ryff (1963) and the Schur-Ostroswski theorem for Schur functionals has

been obtained in Chan, Proschan and Sethuraman (1987).
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Marshall, Olkin and Proschan (1967) determine conditions on (ai, a2,'' , an) and
n n

(bl, b2 ,... b,) for the monotonicity of the ratio of means; g(r) = (Za</Zb )/ r. We next show
i=1 i=I

that one application of this monotonicity yields a stochastic comparison between a function of

order statistics from an IFRA distribution and the same function of order statistics from the

exponential distribution. For notational simplicity, we write ('-P ) = (-2, ,'", 2L).

We know that Ex log x is a Schur function. Thus to show g(r) is increasing in r, or equivalently,

dlogg(r)/dr > 0, it is sufficient that ( - ) ' (-), where a - a and f 1 = b (for r > 0) and
where a1 = ar  and / = b + (forr<0),i=1,2,..- n.

n-i+l an b fo--<0) =1 2.

Marshall et al. (1967) obtain the following theorem.

Theorem 2.5. If al > 0, > .. > ,a, > 0,1 )3,,, > 0, < ... < 2 , then (-) >' (-).
,I - -_ '

Using Theorems 2.4 and 2.5, Marshall et al. (1967) prove the monotonicity of g(r). We will see

how these results are used in making stochastic comparisons involving the order statistics from

distributions F and G, where F is starshaped with respect to G.

An important example in which the conditions of Theorem 2.5 are satisfied is obtained by

choosing aj = 0(#j), where 0 is a nonnegative starshaped function. We note that a nonnegative

starshaped function 0 must be increasing and must satisfy 0(0) = 0. Such functions are discussed

by Bruckner and Ostrow (1962). Assume that 1 _> " > 0; it follows that al = 0(,31) >

•.. _ a,, = €(13,) > 0. Thus by Theorem 2.5,

0(, _ ( ) (2.5)

Let X(,) "" X, be order statistics from F. Then from (2.5) we have for any starshaped

function 0 > 0 that
Exi, Exi <., (xl ), E(xi)

Consequently, if F is starshaped with respect to the distribution G, and Y > ... > Y are order
k n k n

statistics from G, then -x-) ((-r... , ,.e

i=1l i= [ j=Il i-=1

fork = 1,2,...,n.

Theorem 2.4 yields some interesting applications. Choosing the Schur function 0(ti,..., t,) =

nEt? - 1, we obtain

Z(X, - X)t/ Z(1  - )2/F2. (2.6)
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Choosing the Schur function 0(tI,. .,t,,) = nEAjtj/Et,ai , a.,t I > t,., we obtain

AiXt/x<at EAjY/Y (2.7)

An important special case where F is starshaped with respect to G is obtained by choosing

0(x) = e and F to be IFRA. The statistical applications of (2.6) in the problem of testing the

hypothesis that F is exponential versus the alternative that F is IFRA, i.e., log p(x) is concave

where finite, and applications of (2.7) in testing for outliers when the distribution is known to be

IFRA are discussed by Marshall et al (1967).

3. STOCHASTIC COMPARISONS OF ORDER STATISTICS FROM HETEROGENEOUS

DISTRIBUTIONS.

A great body of statistical literature exists for order statistics from a single underlying dis-

tribution. See for example Sarhan and Greenberg (1962), Pyke (1965, 1970), David (1970, 1986),

Groeneveld (1982), and references contained therein. The results involving order statistics from

underlying heterogeneous distributions are far fewer. One motivation for considering underlying
heterogeneous distributions arises in reliability theory, when one studies k-out-of-n systems. A

system of n components is called a k-out-of-n system if it functions if and only if at least k

components function. See Barlow and Proschan (1981). Note that the time of failure of a k-

out-of-n system of independent components with respective life distributions FI,F, .... , F cor-

responds to the (n - k + 1)th order statistic from the set of underlying heterogeneous distributions

{F 1 , F2 ,-.. , F,.,}. Sen (1970) proved that the smallest (largest) order statistics of a sample of size n

from heterogeneous populations is stochastically smaller (larger) than the smallest (largest) order

statistic of a sample of size n from a common population whose distribution is the equally weighted

mixture of the original distributions F 1 ,F 2 ,...,F. Let X(1 ) _< ... < X,,(Y( j : ... Y)) be

the order statistics of n independent random variables X1 , X 2 , .- - , X,,, (Y I , Y2,... , Y,) with dis-

tribution functions F 1 , F2 ,. .. , F(G, G2 ,. .G,+) respectively. A result of Sen (1970) concerning

stochastic relationship, between order statistics is the following.

n

Theorem 3.1. Let GI(x) ... G,(x) = -EF(x). Then
i=l

X(i) :5t Yj) and X(,, _) Y().

Additional results are obtained by Pledger and Proschan (1971), wherein they assume that the

distribution functions in the heterogeneous case have proportional hazard functions. In some of

7



their comparisons, the underlying heterogeneous distributions, less heterogeneous in the sense of

majorization. Pledger and Proschan also compare stochastically spacing between order statistics.

The simplest comparisons of k-out-of-n systems can be made by taking fixed component

reliabilities, Pt, P2,'" p,, rather than time-dependent component reliabilities F(t),... 1 2 (t).

We denote the system reliability of a k-out-of-n system hk(pl,'.. ,p,n) as a function of component

reliabilities pi,-. , p, . For component reliability pi we define the corresponding component hazard

R, by

R= -log pi. (3.1)

By using notions of majorization and Schur function (see Section 2), Pledger and Proschan (1971)

obtain the following inequalities.

Theorem 3.2. Let R = (R 1 ,. ,R) be a vector of component hazards which majorizes R* =

(R... , R*), a second vector of component hazards. Then the corresponding reliabilities for a

k-out-of-n system satisfy

hk(p) >_ hk(p*) for k = 1,-.-,n - 1 (3.2)

and

hn(p) = hn(p*). (3.3)

For a fixed vector p of component reliabilities they also prove hk (p) is a P6lya frequency sequence

of order 2(PF,) in the index k, i.e., h'(p) hk I(p)hk+I(p) for k = 2, ..,n- 1. See Karlin

(1968) for discussion of PF 2 .

The results concerning time-dependent models follow immediately by setting pi = FP(t) and

p = j* (t). We assume independent observations, one observation from distribution F(F,*),1i =

1,2,-..,n. The ordered observations are again denoted by X( I ) < "' X( )X < <X(* )

From Theorem 3.2 the following can be obtained,

Theorem 3.3. (Pledger and Proschan, 1971). Let (- log P (t),..-,- log F, (t)) >n (- log Pt" (t),
log Pn*(t)) for each t > 0. Then X(I) =-, X*t, and X(k) _>, X , for k = 2,. ,n.

Note that by interchanging F and Fj and P(Xk > t) and P(X(,,-k+I) < t), we can derive

the dual of Theorem 3.3: Let (-logF,(t),...,-logF,(t)) >m (-logF (t),...,-logF,*(t)) for

each t >0. Then X(k) < X* fork 1, .. n- I and X(,= X*"

8



If Pl(t),i = 1,...,n, are all equal to the geometric mean of the P(t),...,F.(t), then

X(k) 'S X(k, for k = 1,-. .,n; in particular, X(1 ) =t Xto). Likewise, if F (t) = ... = F(t) =

[fF(t)]"/1n for t > 0, then X(k) _ X*k) for k = 1, . ,n; in particular, X(,) -t X(,.
i=I

In keeping with (3.1) of hazard in the non time-dependent case, we define the hazard function

R(t) corresponding to survival probability P(t) in the time-dependent case by

R(t) = -log F(t) for t > 0. (3.4)

We say hazards are proportional if hazard R(t) may be expressed as

R,(t) = AjR(t) for t > 0, A, > 0,i = 1,, n, (3.5)

where R(t) is a hazard function.

The concept of proportional hazard functions is a very useful one in reliability theory. Assume

that the heterogeneous distributions have proportional hazards Ri(t) = A 1R(t) and R*(t)

A*.R(t),i = 1,2,...,n, where R(t) is a hazard function and that A >' A*. Then one can easily

see that A >' A* implies

-logFP,(t),... , -log ',,(t))->, -logFP;*(t), -..- logF*W))

for each t > 0. Therefore, by Theorem 3.3, we have X( =) t X and X(k) t X*, k 2,.. n.

We state this result in the following theorem. S

Theorem 3.4 (Pledger and Proschan, 1971). Let F1 ,-.., F,,; F*,..., F* have proportional hazard

functions with A,...,A,,; A,... A* as constants of proportionality. Let A >' A*. Then X(1 ) =
Xt*) and X(k) _ Xtk), k = 2,..,n.

Another interesting stochastic comparison can be obtained when survival probability is log-

arithmically convex in the parameter A. Consider survival probability P(t, A) = (At), where G

has DFR and A occurs as a -cale factor. It is a well known fact that a DFR survival probability is

log convex (See Barlow and Proschan, 1981, Chapter 3). Some examples of DFR survival prob-

ability are Weilbull and gamma when shape parameters are < 1. Also a mixture of exponential

distributions has DFR; see Barlow and Proschan (1981), Chapter 4.

Theorem 3.5. (Pledger and Proschan, 1971). For t > 0 let (F(t, A)) be differentiable, monotone,

and log convex in Ai >0, i = 2,. n. If A >m A% then X(k) > -(<,t)X*k) for k l1..,n.

9



Furthermore, if F(t, Aj)(F(t, A1)) is differentiable and log concave in Ai >_ 0, 6 = 1,... ,n, and

A >m A*, then X(,) at X()(X(I) , X().

The above comparisons for the largest and smallest order statistics also hold for parallel and

series systems.

Next we discuss comparisons of spacings arising from a single set of order statistics as well as

the spacings arising from heterogeneous distributions. We assume the underlying heterogeneous

distributions have proportional hazards A1R(t),.-, A,R(t).

Let D1 = X(l),D 2 = X( 2) - X(i),-" .,D, = X(,) - X(,,- 1 ) denote the spacings between

order statistics of independent observations, one from each of n heterogeneous distributions. We

may recall that when the observations come from a single underlying exponential distribution F,

then the normalized spacings nD, (n - 1)D2 ,..., D,, are independently distributed according to

the same exponential distribution F and are stochastically alike, i.e., nDj =at (n - 1)D2 =at

=8t 0,. More general results have been obtained by Pledger and Proschan (1971) when the

underlying distributions have concave proportional hazards. They show the normalized spacings

increase stochastically.

Theorem 3.6. Let Pr(t) = e-,R(t),A 1 > 0 for i = 1,... ,n, where R(t) is concave and differen-

tiable. Then nDj <st (n - 1)D 2 5t ... <t Dn.

Define D, i = 1,... ,n to be the spacing arising from {F ,... ,Fn }, the second set of expo-

nential distributions. Pledger and Proschan (1971) obtain the following comparisons of two sets

of spacings.

Theorem 3.7. Let Pi (t) = e- ',, and P,*(t) = e- t, for i = 1,2,... ,n, where A is the arithmetic

mean of the A, ..... \. Then D, =t D, and D >t D* for i =2,...,n.

Note that the mean I is used for the comparison. A natural question to ask is: Is the same

conclusion possible using a vector \*, where A >' A*? The conclusion need not hold when

A >m A*. A counterexample is provided in their paper.

An application of the results of this section to a reliability problem is as follows. A k-out-of-n

system is to be designed from supposedly like units. However, due to random fluctuations in the

units, the individual unit reliabilities actually vary. From a knowledge of the average reliability

of the units, we wish to predict conservatively the reliability of the system of unlike units. The

10
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theorems in this section describe conditions under which we may obtain such a conservative

prediction.

4. STOCHASTIC COMPARISONS OF VECTORS OF ORDER STATISTICS.

The results discussed so far present stochastic comparisons between an individual order statis-

tic from heterogeneous populations and the corresponding statistic from a homogeneous popula-

tion.

In this section we review stochastic comparisons of pairs of vectors of order statistics from

heterogeneous populations. This stochastic vector comparison yields as special cases the Pledger-

Porschan theorems described above and additional results stochastically comparing partial or

complete sums of order statistics.

Definition 4.1. A function f defined on R ' is said to be increasing if it is increasing in each

argument.

Definition 4.2. The random vector X = (XI,.. ,Xn) is said to be stochastically smaller than

the random vector X* = (X,-.. ,X*), (denoted by X < X*) if f(X) s f(X*) for every

real-valued, Borel measurable, increasing function f defined on R ' .

It is well known that X <"' X* if and only if P(X E B ' ) P(X* E B) for every upper open

subset B of R ' . (A set B C R' is said to be an upper set if a E B and a < b implies b E B.)

Sufficient conditions for the stochastic comparison of two random vectors are given by Shan-

thikumar (1987). His conditions are weaker than those of Veinott (1965), and of Arjas and

Lehtonen (1978).

Given a vector X = (Xi,' ,X, ), let X(1 ) _ " _ X(,) denote an increasing rearrangement

of the coordinates. We denote the vector (X(1 ),... ,X(,)) by X( ). Proschan and Sethuraman

(1976) investigate stochastic comparisons of various functions of X() (X(l), X(,j) with

similar functions X ) = (X(*, •, X(*n)) under suitable conditions on F1 , F,. , ., F.Fn;

We state the main theorem.

Theorem 4.1. (Proschan and Sethuraman, 1976). Let F1,. Fn; F*,. F, , have proportional

hazard functions with A1,.. A,; A*, A as the constants of proportionality. Let A >" A*.

Then X( : X* A special case involving exponential distributions can be readily obtained.
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Theorem 4.2. (Proschan and Sethuraman, 1976). Let Y1, Y, (Y,. Yn*) be independent

exponential random variables with parameters Aq,..., (1 , ,J, respectively. Let A >' A*.

Then Y -a Y

Theorem 4.1 has important applications in reliability and life testing which will be discussed

later. An interesting and useful special case of Theorem 4.1 is given as follows : Since EX(,) is
r,1

an increasing function of X( ) for each subset I of (1, 2,.. , n} under the conditions of Theorem
k k

4.1 we have ZXH,) >,t -'X . Thus -'X(,) > JX* ) for r = 1,2,. k; in particular
rEI rfI r=1 r=1

nn

EX(r) :A I>Z*r
r=1 r=l

Note that Theorem 3.4 is an immediate consequence of Theorem 4.1, since X(,) is an increas-

ing function of X( ) for r = 1,... ,n, and also note that in Theorem 3.4 the order statistics are

stochastically compared one at a time.

It can be checked easily from the distribution functions of the X and X* that if A, > A2 >

•.>A_ and A* > .. A, then

Xl :58t ... <at X,,

and

X* <'t... <

The stochastic ordering above has been achieved by ordering the parameters of the distributions.
n n

One may ask whether A >m A * implies -Xi > ZX:. An affirmative answer is given by
i=k i=k

Proschan and Sethuraman (1976) in the following.

Theorem 4.3 Let A1 > -" _ A > ... > A*). Let Xl,...,Xn(X*,...,X*) be indepen-

dent random variables with proportional hazard functions and with constants of proportionality

A,...,A,(At,. .,An), respectively. Let A >"n A*. Then for each k, 1 < k < n,

n n

i=k i=k

Application 4.1. An important application of Theorem 4.1 concerns the robustness of standard

estimators of the failure rate of an exponential distribution when observations are actually from

heterogeneous distributions. Let Y 1," ,Y, be i.i.d. exponential random variables with failure

12



rate A. Under censored sampling in which observations cease at the rth failure (i.e., Type-Il

censoring), the standard estimator (UMVUE) A takes the form

A(Y) = r/Z Y() + (n - r)Y()], (4.1)
I

where Y() is the ith order statistic i = 1,.., n.

Suppose now that the observations actually come from different exponential distributions,

with average failure rate A. To be specific, let Y*,.. Y,* be independent exponential random

variables with failure rates A*,. A*, respectively, and let = EA*/n. Note that A(Y) in (4.1)

is a decreasing function of Y( ). Thus it follows from Theorem 4.2 that

(_.Y) 3(y*). (4.2)

The implication of (4.2) is that the estimate A in (4.1) tends to underestimate the average failure

rate in the presence of heterogeneity. Proschan and Sethuraman (1976) note that Theorem 4.2

actually gives a more refined conclusion: The greater the degree of heterogeneity (as reflected by

majorization) among A*,..., A* satisfying A = ZA!/n, the greater the underestimation of A.

Barlow and Proschan (1967) have listed estimates for A under various sampling schemes.

These estimates are of the form:

number of failures observed (4.3)

-- total time on test

It can be seen (See Barlow and Proschan, 1967) that in general the estimate in (4.3) is a decreasing

function of the order statistics. Thus, as in the above case of censored sampling, heterogeneity of

the exponential distributions leads to underestimation of the average failure rate when using the

estimate in (4.3).

The following direct applications of Theorem 4.1 are discussed by Proschan and Sethuraman
(1976).

Application 4.2. Let X 1 , X 2 , • be i.i.d random variables having a Weibull distribution with shape

parameter a > 0; i.e., P(X > x) = e-2",x > 0. Let u = (u,... ,u,,) and u* = (u*,...,u*) be

vectors such that (U ... ,u;) " ((u.)-.,.. .,(ua->). Then

Z ui _' E u! Xi. (4.4)
i-I i=I

13



From the Weibull distribution it is easy to see that ul X 1 , ,,X,, have proportional hazard

functions with constants of proportionality u- ,... ,u, ', respectively. Thus (4.4) is immediate

from Theorem 4.1.

Application 4.3. Let Xp denote the binomial random variable with P(Xp = 1) = 1-P(Xp = 0) =

p. Let X.1 , ...,Xp, (Xp,...,Xp.) be mutually independent and let (-logpt,...,-logp,) >'
nn

(-log p*,.-. ,-logpn,). Then EX >at EXp.
i=1 i=1

We note that Theorem 3.2 (Pledger and Proschan) concerning the reliability of k-out-of-n

systems and order statistics can be obtained as a consequence of Application 4.3, since hk(p)
n

P(>ZXp, > k).
i=I

The usual definition of stochastic comparison of random vectors has been extended by

Pledger and Proschan (1973) to stochastic comparison of random processes. We call stochas-

tic process {X(t),t > 0} stochastically larger than stochastic process {Y(t),t > 0} (written

{X(t),t > 0} >4t {Y(t),t > 0} if (X(t),. .. ,X(t,)) __t (Y(t 1 ),...Y(t,)) for every choice of

0 < tl, < t 2 < ... < t,,,n = 1,2,.... This extended comparison permits one to obtain bounds

not just on a few parameters, but simultaneously on an uncountably infinite class of functionals

of the stochastic process. See Pledger and Proschan (1973) for applications to reliability prob-

lems, yielding stochastic comparisons for systems of independently operating machines assuming

exponential failure and exponential repair.

14
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